Visualising Coordination Patterns during human movement

Featured

Here’s an introduction and highlights of our work

  • Proposed coordination pattern classification can offer an interpretation of the CA that provides either in-phase or anti-phase coordination information, along with an understanding of the direction of segmental rotations and the segment that is the dominant mover at each point in time.

Introduction to Vector Coding

  • The traditional approach of reporting time-series data from vector coding can be problematic when overlaying multiple trials on the same illustration.
  • The use of colour mapping and profiling techniques highlighted differences in coordination pattern and coordination variability data across several participants that questions the interpretation and relevance of reporting group data.

Coordinatiion Mapping

  • Colour mapping and profiling techniques are ideal reporting methods to compliment prospective multiple single-subject design studies and to classify commonalities and differences in patterns of coordination and patterns of control between individuals or trials.
  • The data visualisation approaches in the current study may provide further insight on overuse injuries, exercise prescription and rehabilitation interventions.
  • Our approach can have important implications in demonstrating gait coordination data in an easily comprehensible fashion by clinicians and scientists alike.

Key References

Needham, R., Naemi, R. and Chockalingam, N., 2014. Quantifying lumbar–pelvis coordination during gait using a modified vector coding technique. Journal of biomechanics47(5), pp.1020-1026. https://doi.org/10.1016/j.jbiomech.2013.12.032

Needham, R.A., Naemi, R. and Chockalingam, N., 2015. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. Journal of biomechanics48(12), pp.3506-3511. https://doi.org/10.1016/j.jbiomech.2015.07.023

Needham, R.A., Naemi, R., Hamill, J. and Chockalingam, N., 2020. Analysing patterns of coordination and patterns of control using novel data visualisation techniques in vector coding. The Foot, p.101678.  https://doi.org/10.1016/j.foot.2020.101678

Our latest work shows that children with Cerebral Palsy have more energy to play and be physically active for longer!

Featured

 

Our research shows that the appropriate design and tailoring of splints can reduce the energy used by children with CP while increasing their speed and distance, compared with a splint which is not fine-tuned. This is something which could have a significant impact on their quality of life.

During the study, the researchers analysed the walking pattern of children with cerebral palsy at our gait laboratory and participants were assessed while barefoot and with both non-tuned and tuned splints.

Children wearing the fine-tuned splints showed improvements in several areas including hip and pelvic function and knee extension, while a non-tuned splint potentially showed a decrease in hip function.

The full research findings, which were published in the June edition of the Foot Journal, are available below:

Postcode Lottery for NHS Orthotics Patients

Featured

Our latest paper published in the BMJ Open highlight large variances in appointment times, waiting times, product entitlements for patients, and product lead times across various NHS trusts.

Although some geographical areas provide shorter waiting times and wider access to assistive devices, other areas have very long waiting time which means that the service, particularly to the paediatric population is meaningless.

The NHS trusts seemed to be able to answer questions that reflect quantity of service above quality of service. However, the combination of the number of Trusts who declined to reply to the FOI request and those who replied with limited information, hindered the ability of this study to collate the data received to provide a fuller national picture of the Orthotic Service provision.

Although this paper confirms that many of the issues reported in previous reports on Orthotic Service provision are still evident, the result show that there have been some improvements.

Read the full paper here: https://bmjopen.bmj.com/content/9/10/e028186

Press Release: https://www.staffs.ac.uk/news/2019/10/postcode-lottery-for-nhs-orthotics-patients

My experiences at Staffordshire University and #StaffsBiomech

Featured

Christopher Aitkins

The decision of where to study for a master’s degree was a difficult one. There seemed to be an endless choice of institutions, with a multitude of differing delivery models. I was working as a podiatrist and an undergraduate lecturer, I had both teaching and clinical commitments which I couldn’t escape for long periods and the idea of a purely online course seemed tempting; however, deep down I knew that work and life pressures would likely mean my studies may take a back seat. The MSc Clinical Podiatric Biomechanics course seemed ideal, the teaching was blended taught sessions on a weekend, so my day job didn’t need to suffer and there was online support available. This was a bonus as I live in the North East of England and the idea of popping in for a quick tutorial wasn’t possible.

The course was delivered by excellent teaching staff, people who were not only passionate about the subjects they specialised in, but were the authors of the current literature which I had been reading to develop my own clinical practice. In all honesty I was a little star struck, when I met some of them. I was determined not ask a “stupid question”, however, every tutor made me feel at ease and provide a safe and supportive environment which meant there were no “stupid questions”. The discussions that formed were insightful and helpful, led by the tutor guiding us to through the subject. This learning experience is one I have never encountered before and is one I try to model within any teaching sessions I deliver.

The support continued throughout my time studying with Staffordshire University, all my tutors were on hand with a quick reply to an email or to arrange a time for a telephone call which, they managed to fit around my working schedule. This support never wavered even when I started my dissertation. I had excellent guidance from day one; I had opportunity to spend time discussing with my supervisor my research idea, developing my methodology and setting a realistic time frame. At my first meeting my wife was 6 months pregnant with our 1st child. My tutor helped me set a timetable and deadlines which were achievable. Without this I feel, I would have made this process almost impossible for myself and possibly not finished at all. Balancing the demands to complete a research project, write a thesis and live with a new born was challenging. But my tutor had an excellent skill to allow me the space to progress and work, but check in exactly when I needed a boost, some encouragement or just the opportunity to share where I was up to. I completed my project and received a good grade; I was so proud of my achievement through whole duration of my study and felt I had completed a well-rounded piece of research. I have to admit I was surprised when my tutor suggested that I should publish my research. I had never published in a scientific journal, “that’s the sort of thing experts do” I thought. However, as I reflected, I realised that my research was worthy of publication. I had no idea where to start, but my tutors came to my rescue again providing me with the same level of support I had before ( For people who are interested in reading our work, please follow this link).

I am so glad I chose to study with Staffordshire University and the teaching team on MSc Clinical Biomechanics course. I have not only gained a qualification, but published researched, developed a professional network that are always happy to share and discuss learning and most importantly I have developed as clinician. It has not only helped my practice and patients but the experience has allowed me to grow as a professional.

Branthwaite, H., Aitkins, C., Lindley, S. and Chockalingam, N., 2019. Surface Electromyography of the foot: a protocol for sensor placement. The Foot. https://doi.org/10.1016/j.foot.2019.07.001

 

Calling for Early career Researchers in India interested in Diabetes and Assistive Devices

Featured

The Centre for Biomechanics and Rehabilitation Technologies at Staffordshire University, UK is looking to establish a network of like-minded early career researchers in India interested in the area of rehabilitation and/or mobility assistive devices (e.g. footwear, orthoses, prostheses, wheelchairs) for people with diabetes. The goal of this network will be to establish national collaboration between early career researchers within India and international collaboration with Indian institutions and Staffordshire University.Centre for Biomechanics and Rehabilitation Technologies

Ideally you should:

· Have a PhD related to the area of rehabilitation or mobility assistive devices for people with diabete
· Be employed at an Indian University or Research based Institution.
· Be an early career researcher who is currently within their first five years of academic or other research-related employment.
· Ideally with a good range of internationally peer reviewed journal publications.
· Below the age of 40 years.

If you are interested please email Dr. Aoife Healy (a.healy(at)staffs.ac.uk) with a short resume including a list of publications or provide a link to your ResearchGate/Google Scholar profile by Monday 22nd July 2019.